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Abstract

The traditional “bottom-up” approach to video gaze tracking con-
sists of making measurements of images features, such as the posi-
tion of the pupil centroid, corneal reflex, limbus, etc. These mea-
surements are mapped to gaze angles using coefficients obtained
from calibration data, obtained when a cooperative subject volun-
tarily fixates a series of known targets. This may be contrasted with
a “top-down” approach in which the pose parameters of a model of
the eye are adjusted in conjunction with a camera model to obtain a
match to image data. One advantage of the model-based approach
is provided by robustness to changes in geometry, as might occur
due to slippage of a head-mount supporting a camera platform. A
second advantage is that the pose estimates obtained are in units
of degrees; traditional calibration serves only to determine the rela-
tion between the visual and optical axes, and provide a check for the
model. While traditional grid calibration methods may not need to
be applied, a set of views of the eye in a variety of poses is needed
to determine the model parameters for an individual. This paper
describes a simple eye model geometry, explores its behavior, and
outlines a simple procedure for determining the model parameters
from a small set of images.
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1 Introduction

This paper is concerned with the estimation of a human subject’s di-
rection of gaze from an image of the eye. A common approach is to
assume a particular functional relationship between image feature
measurements and gaze parameters, and then determine the param-
eters of the function from a set of calibration images in which the
subject fixates known targets. We refer to this as the “bottom-up”
approach, because we attempt to generate the gaze estimates from
the raw measurement data, without using any knowledge of the ge-
ometry of the underlying eye-camera system. This approach can
often attain satisfactory results, in large part because, for many ge-
ometries, the relationship between gaze angles and feature positions
is linear.

The present work was motivated by two concerns. First, we would
like to determine the limit of accuracy that can be obtained when
a particular algorithm is applied to a particular imaging geometry.
Second, we would like to have a gaze tracking method which re-
quires minimal cooperation from the subject in order to obtain a
calibration. We will address both of these goals by investigating
what we call the “top-down” approach, in which the measurements
are used to constrain the parameters of a geometric/optical model
of the eye.
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Two recent applications of the top-down or model-based approach
[Ohno et al. 2002; Beymer and Flickner 2002] have utilized mea-
surements of the pupil location and shape, and the positions of one
or more glints. (We use the term glint for the sake of brevity; it
refers to the virtual image of the illuminator formed by reflection
from the front surface of the cornea, and is often referred to as the
first Purkinje image, or corneal reflex.) In both cases, these au-
thors were estimating the gaze of a freely moving subject using a
remote camera, with the possible eye poses forming a five dimen-
sional manifold, (two rotational and three translational degrees of
freedom). Both models were rotationally symmetric about the op-
tical axis, in which case a torsion or twist about the optical axis
produces no change in the shape or position of the pupil image, or
glint.

The situation is significantly simpler for the case of a head-mounted
camera; in this case, the pose manifold has three fewer dimensions,
corresponding to the translational movements between the camera
and the head. If the eye rotates about a fixed center, then the pose
manifold may be associated with a pure rotation by placing the ori-
gin of the coordinate system at this center; it is known, however,
that the center of rotation is not fixed, but follows a locus known
as the centrode [Carpenter 1977]. In this case, for any choice of
origin, a generic pose will be represented by both a rotation and
an associated translation, with the composite transformations form-
ing a two-dimensional manifold. While the case of a head-mounted
camera offers some advantages due the dimensionality reduction of
the pose space, it also generally implies a short camera distance,
and therefore necessitates consideration of perspective effects.

In addition to modeling the pupil and glints, we also model the outer
margin of the iris, or limbus. The limbus is an attractive feature for
several reasons. First, unlike the pupil, it is viewed directly, without
refraction by the cornea. Thus we can estimate parameters such as
its size without regard to the estimation of corneal shape. Secondly,
and again in contrast to the pupil, the limbus does not fluctuate in
size, and so once we know its size we can make good pose esti-
mates even when only one side of the limbus is visible, particularly
when head movement is not a concern. Finally, the limbus is a
strong, high-contrast feature, which (in unfavorable imaging situ-
ations) can be the only measureable feature. Interestingly, one of
the early methods to obtain a translation-invariant measure of eye
orientation [Rashbass and Westheimer 1960] involved a differential
measurement of the limbus and glint, using an oscilloscope trace
imaged on the limbus.

In remainder of the paper, we begin by presenting our geometric eye
model, and its parameterization, along with some implementation
details of the imaging simulation. We then use the simulation to
generate synthetic data which we use to explore the performance of
reduced models.

2 The Geometric Eye Model

We model the eye as a spherical ball with radius rE, which rotates
about its center (see figure 1). This sphere is cut by the plane of the
iris, which is at a distance hL from the eyeball center. The circular
curve defined by the intersection of the sphere with this plane is
the limbus. The parameters rE and hL determine the radius of the



Figure 1: The eyeball is modelled as a sphere of radius rE, which is
cut by the plane of the iris a distance hL from its center. The radius
of the limbus, rL is determined by these parameters.

Figure 2: The cornea is modelled as a sphere of radius rC, centered
at a distance hC from the center of the eyeball.

limbus:

rL =
√

r2
E −h2

L (1)

We model the cornea as a spherical surface, bounded by the limbus
(figure 2). (While the results presented here are all for a spherical
cornea, most our computations are based on discrete samples from
the corneal surface, and so can be performed for arbitrary corneal
shapes such as the ellipsoid or conicoid.) Given the position of the
limbus, there is only one free parameter; if we specify the position
of the center of curvature of the cornea to be at a distance hC from
the eyeball center, then we can express the cornea radius of curva-
ture as:

rC =

√

r2
L +(hL −hC)

2 (2)

We model the pupil as a circle in the plane of the iris (figure 3).
The primary pupil parameter is its radius (which generally varies
from frame-to-frame); additionally, we include a pair of decentra-
tion parameters, xP and yP, which describe the position of the pupil

Figure 3: The pupil is modelled as a circle of radius rP in the plane
of the limbus. Decentration parameters xP and yP represent the po-
sition of the pupil center relative to the center of the limbus.

center relative to the center of the limbus. In our model, the pupil
is constrained to be coplanar with the limbus. While this is prob-
ably not a bad approximation, some illustrations show the central
portion of the iris pushed forward by the lens, and it is possible that
an additional parameter may be necessary to account for this.

While we will in general be interested in varying the parameters
to fit a particular subject, for the images rendered in figures 1-3
we used the values indicated in table 1. Also indicated are the
corresponding values for the Gullstrand and Le Grand simplified
eye models, as reported in [Smith and Atchison 1997]. Note that
these models are not complete opto-mechanical models, but only
describe the refracting surfaces and image formation, and do not
include specification of the limbus, or the position of the eye’s cen-
ter of rotation. The overall eye length lE, however, is specified, so
that within our framework it is possible to specify a family of eyes
for which rE + hC = lE − rC, each with a different limbus size gov-
erned by equation 1. The column in table 1 labelled “Cornsweet”
gives values from Cornsweet and Crane’s paper describing the dual
Purkinje image eye-tracker [Cornsweet and Crane 1973]. In their
paper, the eyeball radius rE is not given directly, but can be inferred
from other dimensions. These are not all mutally consistent; the
first value (10.5) is obtained by subtracting the indicated distance
from the corneal pole to the center of rotation from the stated over-
all eye length lE, while the second value (10.2) is obtained from
indicated values lE − rC −hC. In addition, the stated values for rC, hC

and rL do not satisfy equations 1 and 2, which is easily understood
when one notices that the eyeball in their figure is not drawn as a
circle, but appears squashed in front: relative the center of rotation,
rE appears constant for the back of the eye but appears to decrease
near the limbus. In the context of the present work, this is not a
problem, because we are not concerned with retinal image forma-
tion, and so the overall eye length is irrelevant. The appearance
of the anterior structures of such an eye will be equivalent to our
model eye having rE consistent with rC and hC.

2.1 Corneal sampling

The corneal surface is represented by a two-dimensional array of
3-D points. We desire that this array cover the cornea completely
and sample it uniformly. This is would trivial if the cornea were



param. default Gullstrand Le Grand Cornsweet

rC 7.25 7.8 8 7.8

rE 10 10.5 (10.2)
hC 4.5 6
rP 3.3

rL 6.59 6.25

Table 1: Default eye model parameters used in the present simula-
tion, along with comparable values from various schematic eyes.

a flat rectangular patch, but as it is a spherical cap, we have a bit
more work to do. While this problem may be viewed as a mundane
technicality, we present it in some detail because it affects the per-
formance of our algorithms for modelling refraction and reflection,
to be described in the next section.

We begin by generating an array of samples on a circular disk of
unit radius. We imagine the unit circle with an inscribed square
grid pattern, and “inflating” the grid pattern until it fills the circular
region. We present two alternative schemes to achieve this, with
slightly different properties. In each case, the result is to map the
edges of the square to the circular arcs having the same endpoints.

The first method consists of radially expanding the pattern by a fac-
tor which depends on the angle at each point. Let NC represent the
linear dimension of the sample array, and index the array using vari-
ables i and j which each range from 0 to NC −1. We define ui j and
vi j to be the coordinates of the undistorted square array:

ui j =
√

2

(

j

NC −1
− 1

2

)

, (3)

vi j =
√

2

(

i

NC −1
− 1

2

)

. (4)

First we transform to polar coordinates:

ri j =
√

u2
i j +v2

i j, (5)

φi j = tan−1(vi j,ui j). (6)

Now we wish to increase ri j , by the factor by which the circle radius
(1) exceeds the distance from the center to the edge of the square in
the direction φi j. For −π/4 ≤ φi j ≤ π/4 (corresponding to the right

side of the square), this factor is
√

2cosφi j, while for the π/4 ≤
φi j ≤ 3π/4 (the top of the square), it is

√
2cos(φi j −π/2). When

all four quadrants are considered, we obtain

xi j = ri j cosφi j f(φi j), (7)

yi j = ri j sinφi j f(φi j), (8)

f(φ) =
√

2 min
(

|cosφ | ,
∣

∣

∣
cos

(

φ − π

2

)∣

∣

∣

)

(9)

The resulting array of disk samples is shown in figure 4.

While the mesh shown in figure 4 achieves our goal of attaining
approximately uniform sampling of the disk, we note that the ori-
entation of the gridlines changes discontinuously as they cross the
diagonals. This may be undesireable in cases where we want to
use partial derivatives with respect to the array dimensions, as in
a gradient descent search. Therefore we now present an alterna-
tive scheme which achieves continuity at the expense of reduced
sampling uniformity. As in the first scheme, the first row of sample
points samples the circular arc bounded by the two upper vertices of

Figure 4: Sampling grid on the unit disk.

the square. But, unlike the first scheme, now we make the samples
on this arc uniformly spaced:

x0 j = cos

(

3π

4
− jπ

2(NC −1)

)

, (10)

y0 j = sin

(

3π

4
− jπ

2(NC −1)

)

. (11)

Similarly, the left-most column of samples are spaced uniformly on
the left-hand arc of the circle:

xi0 = cos

(

3π

4
+

iπ

2(NC −1)

)

, (12)

yi0 = sin

(

3π

4
+

iπ

2(NC −1)

)

. (13)

Arbitrary rows of sample points are generated as linear combina-
tions of the top row and the horizontal diameter of the circle. We
define a set of uniform samples on this diameter:

s j =−1+
2 j

NC −1
. (14)

Note that the samples on the diameter will only belong to the array
in the case where NC is odd. An arbitrary sample point (xi j,yi j) will
be expressed as a mixture of the diameter and either the top row
(for i ≤ NC/2) or the bottom row (for i > NC/2). We first consider
the case i ≤ NC/2:

xi j = αix0 j +βis j (15)

yi j = αiy0 j (16)

Now we must obtain the weights αi and βi. To satisfy equations 12
and 13, the following system of equations must be satisfied:

(

xi0

yi0

)

=

∣

∣

∣

∣

x00 s0

y00 0

∣

∣

∣

∣

(

αi

βi

)

. (17)

The weights αi and βi are computed by inverting the matrix, and
applying the inverse to the left-hand points given by equations 12
and 13 for 0 ≤ i ≤ NC/2. The rows below the diameter are ob-
tained from upper rows by inverting the y coordinate. The resulting
sampling of the unit disk is shown in figure 5.



Figure 5: An alternate sampling of the unit disk. The orientation of
the local coordinate system does not have the discontinuites seen at
the diagonals in figure 4, but achieves this by sacrificing uniformity
of sample spacing at the “corners.”

We have presented above two methods for obtaining an approxi-
mately uniform sampling of a circular disk by a two-dimensional
array of points. Now we need to map the points on the unit disk to
the spherical cap representing the cornea. At this point we could
simply scale up all the x and y coordinates by rL, and compute the
corresponding z such that the resulting 3-vector has a length of rC.
While this would result in apparently uniform sampling in a frontal
view, the edges of the cornea would be undersampled in the angular
domain. To rectify this, we apply a radial transformation to our disk
samples. First we transform to polar coordinates:

ri j =
√

x2
i j +y2

i j, (18)

φi j = tan−1(yi j,xi j). (19)

We then compute new coordinates in which we treat ri j as a desired
slant angle, and scale up by rL:

xi j = rL

sin(θLri j)

sinθL

cosφi j, (20)

yi j = rL

sin(θLri j)

sinθL

sinφi j, (21)

θL = tan−1(
rL

rC

). (22)

We compute zi j so that the final point lies on the corneal sphere:

zi j =−(hC +
√

r2
C −x2

i j −y2
i j). (23)

Note that we have made the z values negative, so the unrotated
model points in the negative z direction. The resulting meshes ob-
tained when NC = 13 are shown in figures 7 and 6.

3 Rendering the Model

We simulate image formation using a simple pinhole camera model.
The eyeball center is placed at the origin of the coordinate system
(x right, y up, and z away). We adopt a left-handed coordinate sys-
tem, so that when we view the model in the positive z direction

Figure 6: The corneal surface is sampled by a two-dimensional ar-
ray of points. The rectangular sampling array attempts to sample
the corneal surface uniformly. For the purposes of illustration, the
mesh is shown here for NC = 13, but for the simulations reported
here a value of 512 was typically used.

Figure 7: An alternate mesh for sampling the corneal surface. Com-
pared to the mesh depicted in figure 6, the mesh depicted here sam-
ples more uniformly in the “corners,” but the local gridlines change
orientation discontinuously along the diagonals.

with the positive y axis pointing up, the positive x axis points to the
right. The camera is located on the negative z axis at distance d,
pointing towards the origin. For any point p = (x,y,z), we compute
normalized image coordinates (u,v) as follows:

u =
1

2
+

f x

2(z+d)rs
, (24)

and

v =
1

2
+

f y

2(z+d)rs
(25)

where f represents the focal length and rs is the “radius” of the sen-
sor chip. In addition, we calculate images using orthographic pro-
jection, u= x, v= y. Orthographic projection represents the limit as
the distance from the eye to the camera and light source increases;
unless otherwise stated, calculations reported for perspective pro-
jection were made using a camera positioned at (0,0,-75), looking
in the positive z direction at an eye located at the origin. The coor-
dinates represent distance in millimeters.

To render the limbus, we tabulate an array of 3-D points corre-
sponding to the limbus, and project as described above. For visu-
alization purposes, we also render the outline of the eyeball, which
is slightly more complicated because the outline is not a fixed lo-
cus which moves with the eyeball. For orthographic projection, we
simply draw a circle of radius rE centered at the projection of the
eyeball center. For perspective projection, we first calculate the ra-
dius of the circle of tangency between the eyeball sphere and the
viewing cone with apex at the camera center, and then generate a
list of points on this circle as trigonometric combinations of a pair
of unit vectors normal to the viewing axis. We use a similar proce-
dure to render the occluding edge of the cornea, when appropriate.

To render the image of the pupil, we begin by tabulating an array
of points on the inner margin of the iris. For each iris point, we
must find the corresponding point in the cornea where the image
will appear. We find this point by exploiting Fermat’s principle of



Figure 8: For each pupil point, the apparent position in the cornea is
determined by finding the corneal point for which the total optical
distance from the pupil to the camera is minimal.

least action, which states that the path taken by a ray of light mini-
mizes the optical distance considered over all possible paths. For a
given point in the plane of the iris, we compute the optical distance
between the point and the camera center for a set of samples on the
corneal surface, and then choose the sample for which the distance
is minimal. (The position of the glint produced by an illumina-
tor can be computed in the same way: the locus of points in three
dimensions which form the boundary of the illuminator assumes
the role of the pupil locus.) Note that in computing the optical
distances, the physical distance from a pupil point to each corneal
point must be multiplied by the index of refraction (1.33). This
method requires dense sampling of the corneal surface to obtain
accurate results, although in principle we should be able to obtain
“sub-pixel” estimates through interpolation. For the initial frame,
we compute the distance over the entire cornea, and scan the ar-
ray of distances to find the global minimum. For subsequent points
which traverse a continuous locus (such as the pupil margin), we
can reduce the amount of computation needed by only calculating
the optical distances for a small sub-array of the corneal samples.
In our algorithm, the size of the subwindow is a tuneable param-
eter: expressed as a number of samples, it must be increased as
the density of corneal samples is increased, but can be decreased
as position change between successive samples in the iris plane de-
creases (such as by increasing the number of pupil samples). The
subwindow is centered on the corneal sample corresponding to the
solution for the previous pupil sample; if the minimum value falls
on the edge of the subwindow, it is repositioned up to 5 times to en-
sure that the global minimum is found. It is for this reason that we
went to so much trouble to ensure uniform sampling of the corneal
surface; an early implementation used polar coordinates to param-
eterize the corneal surface, producing an unusually high sampling
density in the vicinity of the corneal pole, which broke our search
algorithm.

The circularly symmetric model we have described above has an
obvious axis, namely the axis of symmetry which is the line line
joining the eyeball center with the center of curvature of the cornea.
In our model, this axis (which we shall refer to as the corneal axis)
coincides with the optical axis and the pupillary axis (terms which
shall be defined as needed). This axis does not generally correspond
to the line-of-sight or direction of gaze, however. The sampling of
visual space by the photoreceptor array is extremely nonuniform,
and there is a specialized region called the fovea which has the
highest sampling density of receptors. When a person “looks at”
a target, they move their eye so as to cause the image of the target
to fall on the fovea. The line of sight defined this way does not
generally coincide with the optical axis but deviates by an angle,
often represented by the symbol κ . Determination of angle κ re-
quires either a cooperating subject reporting when they are fixating
directly “on” a reference target, or a stimulus so powerful that there
can be no doubt that any subject must fixate it. For the remainder of
this paper, we will ignore this complication, and discuss the corneal

axis as if it were the line-of-sight.

Figure 9: Slant angle θ is subtended by the model axis and the
negative z axis.

Figure 10: Tilt angle φ is subtended by the projection of the model
axis to the xy plane and the positive x axis, when viewed in the
positive z direction.

We parameterize the orientation of the model by two angles: the
slant θ describes the angle the corneal axis makes with the negative
z axis (figure 9, while the tilt φ describes the angle the projection
of the axis into the xy plane makes with the positive x axis, when
viewed in the positive z direction (figure 10). Figure 11 shows the
model rendered for a variety of gaze directions. At the center, we
see the model pointing directly toward the camera. In this view,
and only this view, the pupil and limbus appear as concentric cir-
cles. For the case of orthographic projection (as in figure 11), the
shape of the pupil and limbus depend only on the slant, while their
orientations in the image depend only on tilt. (For perspective pro-
jection, these relations remain approximately true when the camera
is pointed at the eye.) Note that, for any of the other views corre-
sponding to a non-zero slant angle, the limbus and the pupil appear
as ellipses whose minor axes (possibly extended) passes through the
projection of the eyeball center; the various views are positioned in
the figure so that these lines all meet in the center. In figure 11, the
outer ring of eyes all have a slant of 60 ˚ and tilts which span the
range from 0 ˚ to 360 ˚ .



Figure 11: Eye model rendered using orthographic projection for
slants 0 ˚ (center), 30 ˚ , and 60 ˚ .

4 Empirical relations

In the preceding sections, we have described the geometric model
of the eye, and our method for determining the positions of various
features. In this section we explore how the feature positions and
shapes covary as the eye rotates. For the purpose of gaze estimation,
this may be our final goal; we may have no interest in the radius of
curvature of the cornea, but we do want to know how much motion
of the pupil and glint relative to the limbus should be expected as
the eye rotates.

In our model, the limbus is modelled as a circle; thus, it’s projection
in the image will always be an ellipse, whether rendered in ortho-
graphic or perspective projection. The image of the pupil, however,
is not in general perfectly elliptical after refraction by the cornea.
For moderate gaze angles, however, it will be very nearly elliptical,
and we will summarize its shape by fitting an ellipse to the set of
points we obtain after mapping the pupil. The results reported here
were obtained by fitting general conic of the form

ax2 +bxy+cy2 +dx+ey+ f = 0. (26)

A fit minimizing the algebraic error with respect to N points is ob-
tained by constructing an Nx6 matrix of terms made from the point
coordinates, which when multiplied by the vector of coefficients
results in a vector of N zeros:
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We compute the singular value decomposition of the matrix of data
terms, using the routine svdcmp from the Numerical Recipes li-
brary [Press et al. 1992]. The desired coefficients are obtained from
the eigenvector with the smallest eigenvalue. This procedure could
be improved by minimizing the geometric error instead of the alge-
braic error, and by insuring that the points to be fit are uniformly
spaced in the image, rather than on the underlying structures. An
ellipse-specific fitting algorithm [Pilu et al. 1996] is reported to give
better results for noisy or incomplete data; however, we assume
that, in the present case (where the curves are close to being per-
fectly elliptical and are densely sampled with little noise), incorpo-

ration of one or more of these niceties would not appreciably affect
the results.
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Figure 12: Position of the center of the pupil (upper curve) and
limbus (lower curve) as a function of slant under orthographic pro-
jection, expressed in millimeters. The curve for the limbus is ex-
actly described by a sinusoid; the curve for the pupil is more com-
plicated due to the effect of refraction by the cornea, but is well-
approximated by a stretched sinusoid (see text).
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Figure 13: Similar to figure 12, but for perspective projection. Ver-
tical units are now in sensor pixels.

Figure 12 shows the computed position of the center of the pupil
and limbus under orthographic projection, as a function of slant,
sampled in 1 degree increments from 0 to 90. For the limbus, the
relation is expressed exactly by:

f(θ ) = hL sin(θ ). (28)

For the pupil, the data plotted are derived from the ellipse fits to
the computed pupil images. It can be seen in figure 12 that, at a
first glance the pupil appear approximately sinusoidal in form, like
the limbus, but with slightly higher amplitude. We fit the pupil data
with a stretched version of the limbus function:

f(θ ) = αhL sin(βθ ). (29)

In this equation, α represents the vertical stretching factor, while
β represents the horizontal factor. In figure 12, the data are over-
laid with a descriptive fit obtained by application of equation 29,
with parameters α = 1.16, β = 0.96. These values were obtained



using the STEPIT optimization procedure [Chandler 1969]; the op-
timization sought to minimize the total squared error e f it between
the observed data d(θ ) (shown above in figure 12) at a set of slants
{θi} and the fit:

e f it =∑(d(θi)−αhL sin(βθi))
2. (30)

Figure 13 shows similar results for perspective projection by a cam-
era located 75 mm from the eyeball center.

The results shown in figures 12 and 13 were obtained using the
default model parameters (see table 1). These simulations were
repeated for different values of rC, from 7 to 8.5 mm in steps of 0.1
mm. Data sets similar to those shown in figures 12 and 13 were
tabulated, sampling slant in 5 degree steps. The data were again
fit with the descriptive model (equation 29); the fit parameters are
shown in figures 14 and 15.
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Next we consider the shape of the pupil and limbus. Because the
image loci are either exactly elliptical, or well-fit by an ellipse, we
describe the shape using two parameters: the orientation (of the
major axis) and the aspect ratio (minor axis length divided by ma-
jor axis length). We select this definition of aspect ratio because the
resulting dependence on slant is particularly simple for the unre-
fracted limbus under orthographic projection: it is simply cosθ .
Figures 16 and 17 show empirically tabulated results for ortho-
graphic and perspective projection, respectively. Again, we intro-
duce a descriptive model to fit the observed data by stretching the

slant axis:

f(θ ) = cos(λθ ). (31)

Figure 18 shows the values of λ obtained for various values of rC.
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Figure 16: Length of the minor axis of the best-fitting ellipse, ex-
pressed as a fraction of the major axis length, for the limbus and
pupil viewed with orthographic projection.
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Figure 17: Same as figure 16, but for perspective projection with a
camera located 75 mm from the eyeball center.

5 Parameter estimation

In the previous section, we explored how the observable features
would be expected to vary with changes in pose and structural pa-
rameters. In practice, we need to solve the inverse problem: given
a set of observations, we wish to recover estimates of the structural
parameters (fixed for the entire set) and pose parameters (indepen-
dent estimates for each image). Beymer and Flickerner estimated
the structural parameters from a set of 18 stereo pairs using a non-
linear optimization routine[Beymer and Flickner 2002]. Obviously,
we can improve the accuracy of our estimates by including more
images, but each added image brings with it additional unknown
pose parameters, and corresponding increase in the computational
cost of performing the optimization.

In some cases, we may be interested in data sets for which the fea-
tures cannot be reliably located by automatic procedures. One such
data set, collected outdoors with shadows cast by the sun, was the
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Figure 18: Horizontal stretch parameters for model fits to data as
shown in figures 16 and 17.

motivation for the present work. When the features cannot be lo-
cated automatically (i.e., the program has not been written), it may
still be possible for a human to visually locate at least some of the
features. To make this process efficient, we do not want the opera-
tor to label the pupil and limbus separately and independent, rather
we wish to provide him or her with a set of knobs corresponding to
the pose parameters (for a head-mounted camera, slant θ , tilt φ and
pupil radius rP), which move all the observable features together. To
do this for the first image requires arbitrarily assigning default val-
ues to the intrinsic structural parameters; if they are wrong, a good
fit to the first image can often be obtained through compensating
adjustments to the pose parameters, but eventually an inconsistency
will arise. We would like to find an efficient method for determina-
tion of the intrinsic parameters from a small set of images.

We consider the case of a head-mounted camera, and assume a
fixed relation between the camera and the eyeball center. One of
the simplest parameters to obtain is the limbus radius rL, provided
we have a frame in which the limbus is mostly visible, and not too
slanted. We fit an ellipse to the visible limbus points, and take half
the length of the major axis. This value will be in pixels. Up until
now, we have expressed all quantities in their physical units (mm),
but for the time being we will find it convenient to work in pixels,
understanding that they are related to physical units by a (possibly
unknown) scale factor which depends on the sensor resolution, the
lens focal length, and the camera distance.

We can determine the image location of the projection of the eye
center from two images, simply by finding an elliptical feature
(pupil or limbus) in each images, and then finding the intersection
of the two minor axes. This point is defined as long as the eye
slant is not zero (ellipse orientation defined) and the two ellipses
have different tilts (minor axes not parallel). For this purpose, it is
clearly beneficial to select images with as large a slant as possible,
to reduce uncertainty in the direction of the minor axis. Also, it is
beneficial to choose a pair for which the two ellipses have more-or-
less orthogonal orientations, to reduce uncertainty in the location of
the intersection point. While ellipses from two images determine a
unique center point, when more images are available we can ob-
tain a least squares solution; by representing points and lines using
homogenous coordinates (see, for example [Hartley and Zisserman
2003]), the problem of finding the best intersection of a group of
lines can be solved in the same manner as the dual problem of fit-
ting a line to a set of points. We construct a matrix of the line

coordinates, and seek a point (x0,y0) for which
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As in our solution for the best fitting ellipse parameters (equation
27), the desired result is using the SVD to obtain the eigenvector of
the matrix with the smallest eigenvalue.

Once the center has been determined, we are in a position to de-
termine the distance of the plane of the limbus hL from the center
of rotation. For an image a moderately large eye slant, we deter-
mine the apparent aspect ratio of the limbus, which we will call
a. Assuming orthographic projection, it follows that the slant θ is
simply cos−1 a. For perspective projection, if we know the imag-
ing geometry we can construct a set of predictions (as in figure 17),
determine the parameter λ , and obtain the slant θ as (cos−1 a)/λ .
With an estimate of the slant, we are now in a position to estimate
hL: for orthographic projection, the displacement of the ellipse from
the center is given by hL sinθ , as in figure 12. So for a measured
displacement d, hL can be computed as d/sinθ .

We used the position and aspect ration limbus to determine hL be-
cause they are unaffected by the curvature of the cornea. If the
corneal radius were known we could equally well have used the
pupil, after making appropriate corrections. But if we determine hL

as described above, then we can now determine the radius of curva-
ture of the cornea from an image in which the limbus and pupil are
both visible. From the limbus, we can determine the slant θ as de-
scribed above. Figures 14 and 15 tell us the parameters necessary to
predict the variation of pupil position with slant, as in figures 12 and
13. We choose the corneal radius rC so that the displacement pre-
dicted for slant θ matches the observed displacement. This might
be done using an iterative search procedure, or directly by fitting
lines or low-order polynomials to the curves in figures 14 and 15.

Note that at this point, we have not used the apparent aspect ratio
of the pupil, but we have determined all of the intrinsic structural
parameters of the model. Comparison of the predicted and observed
pupil aspect ratios provides a consistency check.

The simple procedure outlined above is intended to be more an ex-
ample of the general approach than a definitive method. The alert
reader will have noticed that in the preceding section we made no
mention of the glint. The position of the glint provides independent
evidence concerning the shape of the cornea. For a head-mounted
camera system, incorporation of measurements of glint position of-
fer a consistency check, enabling detection of slippage of the head
mount. For a remote system, in which the eyeball center cannot be
assumed to be fixed, measurement of the position of one or more
glints becomes a necessity.

In the absence of pupil decentration, the model predicts that ellipses
fit to the pupil and limbus will have the same orientation. Occasion-
ally, we observe images for which this does not seem to be true.
One possibility is that our assumption of a circular pupil is false.
This could be tested by inspection of images with slants near zero.
Alternatively, mis-aligned ellipses might arise from a de-centered
pupil combined with an eye rotation in a different direction.

6 Conclusion

We have described a simple model for predicting the appearance of
the anterior structures of the eye. By exploring the behavior of the
model, we are able to develop simple parametric approximations
describing the variation of observable image parameters with gaze



angle. When relative motion between the head and the camera is
eliminated (as with a head-mounted camera), the model parameters
can be determined from as few as two images. Incorporation of the
model into a manual eye labelling tool increases operator efficiency,
and enables gaze estimates for images in which many of the features
not seen.
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